Crystal Chemistry of LuPd₂O₄ and Other Spinel-Related NdCu₂O₄-LaPd₂O₄-Type Compounds

Bai-Hao Chen* and Dave Walker

Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964

Bruce A. Scott

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

Received March 13, 1997. Revised Manuscript Received May 2, 1997[®]

Lutetium palladium oxide (LuPd₂O₄) has been prepared in a multianvil apparatus at 60 kbar pressure and 1000 °C. It crystallizes in the tetragonal LaPd₂O₄-type structure with space group $I4_1/a$, a = 5.681(1) Å, c = 9.881(2) Å, and Z = 4. The structure of this compound, like that of NdCu₂O₄ and other members of this new class, is closely related to that of spinel except for the difference in oxygen arrangements, leading to a difference in coordination of the A, B, and O ions. It can be derived from spinel by oxygen displacements. A new version of Kugimiya and Steinfink's AB₂O₄ correlation map in the region 0.04 < K_{ab} < 0.18 and 0.8 < r_a/r_b < 1.7, has been generated. It shows that the new AB₂O₄ class lies in the area between the spinel- and CaFe₂O₄-type regions.

Introduction

Compounds with the stoichiometry AB₂O₄ exhibit many structural types. The major structural types are spinel, olivine, phenacite, K2MgF4, K2SO4, CaFe2O4, and BaAl₂O₄. Recently, two new AB₂O₄ structural types, monoclinic NdCu₂O₄ with space group I2/b (No. 15, unique axis c) and tetragonal LaPd₂O₄ with space group $I4_1/a$ (No. 88), have been discovered.¹⁻⁴ The compounds $LnCu_2O_4$ (Ln = Y, La, Nd, Sm, Eu, Gd, Er, and Lu) adopt the former, while the compounds RPd_2O_4 (R = Y, La, Pr, Nd, and Gd) and AAu_2O_4 (A = Ca, Sr, and Ba) crystallize in the latter. In addition, nonstoichiometric NdCu₂O₄-type cuprates YCu_{1.8}O_v and TmCu_{1.8}O_v have also been reported.⁵ These new AB₂O₄ phases can only be prepared under high pressure, except for LnCu₂O₄ phases containing Ln with radii larger than that of Tm, which can also be obtained using low-temperature flux methods.¹ Although the crystal symmetries between NdCu₂O₄ and LaPd₂O₄ are different, their structures are essentially same. Both are related to spinel as described by Chen et al.² Recently, part of our research has been involving the search of new superconducting materials using high-pressure synthesis. The new AB₂O₄-class phases are of great interest to us not only because their structure is related to that of spinel but also because of B-site mixed valency (excluding B = Au) making these systems similar to mixed valence Ti^{3+/} Ti⁴⁺ in the superconducting spinel LiTi₂O₄.⁶ In addition, from the geochemical point of view, the system is also of interest because some high pressure forms of the AB_2O_4 oxides are believed to be important constituents of Earth's mantle.⁷ To explore the phase stability of the new AB_2O_4 classes and to improve our understanding of the structural relationship between them and spinel, we have carried out an investigation of the high-pressure synthesis and structure of $LuPd_2O_4$, using an octahedral multianvil apparatus and X-ray powder diffraction.

Synthesis and Structure of LuPd₂O₄

The LuPd₂O₄ phase was prepared from mixtures of Lu₂O₃ (Johnson Matthey, 99.99%), PdO (Cerac, 99.95%), and KClO₃ (Aldrich, 98%) as an oxygen source in molar ratio 3:12:1. Lu₂O₃ was prefired at 950 °C immediately before use. The mixture was ground, loaded in an Al₂O₃ capsule, and placed into a multianvil apparatus. The apparatus uses two stages, eight anvil cubes within six cubic anvil drivers, contained within a cylindrical stress guide. Uniaxial forces of up to 450 tons from a hydraulic press drive the compression of the sample within an octahedral solid ceramic pressure medium through the sliding system of the ring, wedges, and anvils. A full description of the multianvil apparatus and the highpressure experimental procedures has been published previously.⁸ The final product was obtained at 60 kbar and 1000 °C for 3 h.

The sample was characterized with a Siemens D-500 X-ray powder diffractometer using Cu K α radiation. The X-ray powder data were obtained in the range $20^{\circ} < 2\theta < 80^{\circ}$ using a step width of 0.02° and a counting period of 20 s. The X-ray pattern is similar to LaPd₂O₄, suggesting that it has the LaPd₂O₄ structural type. The structure of LuPd₂O₄ was refined by Rietveld profile analysis of X-ray powder diffraction data using the FULLPROF program with a pseudo-Voigt peak-shape

[®] Abstract published in *Advance ACS Abstracts,* June 15, 1997.

⁽¹⁾ Keller, S. W.; Carlson, V. A.; Sandford, D.; Stenzel, F.; Stacy, A. M.; Kwei, G. H.; Alario-Franco, M. *J. Am. Chem. Soc.* **1994**, *116*, 8070.

⁽²⁾ Chen, B.-H.; Walker, D.; Suard, E.; Scott, B. Chem. Mater. 1995, 7, 355.

^{(3) (}a) Krämer, G.; Jansen, M. J. Solid State Chem. 1995, 114, 206.
(b) Krämer, G.; Hägele, E.; Wagner, N.; Jansen, M. Z. Anorg. Allg. Chem. 1996, 622, 1027.

^{(4) (}a) Krämer, G.; Jansen, M. J. Solid State Chem. 1995, 118, 247.
(b) Park, J.-H.; Parise, J. B. Chem. Mater. 1995, 7, 1055.

⁽⁵⁾ Tatsuki, T.; Adachi, S.; Itoh, M.; Tamura, T.; Wu, X.-J.; Jin, C.-Q.; Yamauchi, H.; Koshizuka, N.; Tanaka, S. *Jpn. J. Appl. Phys.* **1995**, *34*, L615.

⁽⁶⁾ Johnston, D. C.; Prakash, H.; Zachariasen, W. H.; Viswanathan, R. Mater. Res. Bull. **1973**, *8*, 777.

⁽⁷⁾ Reid, A. F.; Ringwood, A. E. J. Solid State Chem. 1970, 1, 557.
(8) (a)Walker, D. Am. Mineral. 1991, 76, 1092. (b) Chen, B.-H.;
Walker, D.; Suard, E.; Scott, B.; Mercey, B.; Hervieu, M; Raveau, B. Inorg. Chem. 1995, 34, 2077.

Table 1. C	rystallogra	phic Data	for i	LuPd ₂ O ₄	with
Estimated	d Standard	Deviation	s in	Parenthe	sesa

formula weight				451.77			
с	rystal sys	tem		tetragonal			
s	pace grou	р		I41/a (No.	88)		
a	i (Å)	•		5.681(1)			
С	· (Å)			9.881(2)			
I	/(Å ³)			318.9(1)			
2	2			4			
I	$D_c (g \text{ cm}^{-3})$)		9.410			
n	o. of refle	ctions		52			
ŀ	$\mathcal{R}_{P}(\%)$			5.07			
ŀ	Run (%)			7.07			
ŀ	$\mathcal{R}_{B}(\%)$			1.84			
ŀ	$R_F(\%)$			1.20			
-	- 2 ()						
Positional and Isotropic Thermal Parameters							
atom	site	X	У	Z	<i>B</i> (Ų)		
Lu	4a	0	0.25	0.125	1.5(2)		
Pd	8d	0	0	0.5	2.1(3)		
0	16f	0.149(2)	0.072(2)	0.313(1)	1.0		
Sel	ected Bon	d Distances	(Å) and Bon	d Angles (de	ogree)		
$I_{11}=0$	232(1)	4 I u = 0	$228(1) \times 10^{-10}$	a migres (at	(gree)		
Pd-O	$2.02(1) \times 2.07(1) \times 10^{-10}$	2 Pd = 0	$2.20(1) \times 3$	Pd-Pd	$2.840(1) \times 2$		
	2.07(1)	$\Omega_{-} Pd_{-} \Omega$	087(3)	siu iu	2.040(1) × 2		
$U_{1} = 0 = U_{1}$	1100(3)		d 131 6(A)	Lu=0-Dd	101 5(2)		
Dd_O_Dd	102 2(3)		$d_{1050(4)}$		101.3(3) 102.4(4)		
iu U-ru	102.2(3)	Lu-0-F	u 105.0(5)	Lu U-Fu	103.4(4)		

^{*a*} $R_p = \sum |Y(j)_0 - C^* Y(j)_c|/\sum |Y(j)_0|, R_{wp} = \{\sum w(j) [Y(j)_0 - C^* Y(j)_c]^{2/} \sum w(j)^* Y(j)_0^2\}^{1/2}, R_B = \sum |I(k)_0 - I(k)_c|/\sum I(k)_0, R_E = \{(N - P + S)/ [w(j)^* Y(j)_0^2]\}^{1/2}$, where *C* is a scaling factor, *N* is the number of points in the pattern, *P* is the number of refined parameters, *S* is the number of strict constraint functions, *Y(j)* are profile intensities after background subtraction, *I(k)* are Bragg intensities, and *w(j)* are weights.

 Table 2. Lattice Parameters of the NdCu₂O₄ and LaPd₂O₄-Type Compounds

compound	<i>a</i> (Å)	b (Å)	c (Å)	γ (deg)	V(Å ³)	refs	
NdCu ₂ O ₄ Type							
LaCu ₂ O ₄	5.919(1)	5.846(1)	9.764(2)	92.24(1)	337.6	1	
NdCu ₂ O ₄	5.826(1)	5.753(1)	9.703(1)	92.34(1)	324.6	1	
NdCu ₂ O ₄	5.822(2)	5.748(2)	9.695(3)	92.34(2)	324.2	2	
SmCu ₂ O ₄	5.784(1)	5.707(1)	9.667(1)	92.42(1)	318.8	1	
EuCu ₂ O ₄	5.762(1)	5.684(1)	9.646(1)	92.40(1)	315.6	1	
GdCu ₂ O ₄	5.742(2)	5.663(2)	9.628(3)	92.40(2)	312.7	2	
YCu ₂ O ₄	5.695(2)	5.611(2)	9.569(3)	92.56(2)	305.5	2	
ErCu ₂ O ₄	5.668(2)	5.590(2)	9.548(3)	92.48(2)	302.2	2	
LuCu ₂ O ₄	5.624(2)	5.545(2)	9.507(3)	92.51(2)	296.2	2	
LaPd ₂ O ₄ Type							
LaPd ₂ O ₄	5.9140(5)		10.289(1)		359.9	3	
PrPd ₂ O ₄	5.8382(2)		10.1687(5)		346.6	3	
NdPd ₂ O ₄	5.8419(3)		10.1949(6)		347.7	3	
NdPd ₂ O ₄	5.830(3)		10.181(5)		346.0	а	
GdPd ₂ O ₄	5.7799(3)		10.0677(8)		336.3	3	
YPd_2O_4	5.7359(3)		9.9829(8)		328.4	3	
YPd ₂ O ₄	5.727(3)		9.969(5)		327.0	а	
LuPd ₂ O ₄	5.684(2)		9.881(3)		318.8	а	
BaAu ₂ O ₄	6.4297(4)		10.251(2)		423.8	4	
SrAu ₂ O ₄	6.1830(1)		10.1704(2)		388.3	4	
CaAu ₂ O ₄	5.99114(1)		10.04983(3)		360.7	4	

^a This work (the samples were prepared at 60 kbar).

function.⁹ The refinement parameters include atomic position, lattice parameters, a zero-point error, isotropic thermal parameters except that for oxygen, overall scale factor, background, peak-shape parameter, and halfwidth parameters. The input of the lattice parameters for the refinement was obtained by a least-squares method.¹⁰ The structure of LaPd₂O₄ was used as the starting model. Impurities phases Pd, PdO, Lu₂PdO₄, Lu₂O₃, and KCl in the sample were also included in the refinement.

 $LuPd_2O_4$ adopts the $LaPd_2O_4$ structural type and its crystallographic data are summarized in Table 1. The

 $LnPd_2O_4$ (Ln = Y and rare earth) series, including the new LuPd₂O₄ member, exhibits the following structural features: (a) the ratio of the lattice parameters c/a is a constant \sim 1.743; (b) the Pd–O–Pd bond angles decrease with the size of Ln due to the decrease of the Pd-Pd distances, resulting in increasing metallic behavior;³ (c) reducing the size of Ln also increases the electrostatic repulsion between oxygen ions, increasing the distortion (i.e., the difference between two Pd–O bond distances) of the PdO_4 square plane; (d) the average Ln-O distances are shorter than the sum of the Shannon's ionic radii due to the preparation under high pressure;¹¹ (e) the average Pd–O distances vary from 2.00 to 2.05 Å; (f) cell volumes depend on the synthesis condition. The cell volumes of the samples prepared at 60 kbar are smaller than those prepared at 20 kbar (see Table 2). Table 1 also shows that the average M-O-M (M = Pd or Lu) bond angle in the distorted Lu₂Pd₂O tetrahedra is 109.0°, compared to 109.5° for a regular tetrahedron.

Structural Relationship between the New AB₂O₄ Class and Spinel

The structure of the new AB₂O₄ class is presented in Figure 1a. Corner-sharing square planar BO₄ groups are linked perpendicularly to each other, leading to a parallel array of pseudotetragonal tunnels along the *c*-axis. A ions reside in these tunnels, forming distorted edge-sharing AO₈ triangulated dodecahedra. Figure 1b shows the structure is comprised of parallel stacks of BO₄ square planes running along the *a* and *b* axes. Oxygen links to two A and two B ions, forming distorted A₂B₂O tetrahedra (B–O–B angles, which are 90° for spinel, are close to 109.5°). In contrast, the structure of spinel presented in Figure 2a consists of edge-shared BO₆ octahedra and isolated AO₄ tetrahedra. Oxygen links to one A and three B ions, forming AB₃O polyhedra.

The structure of the new AB₂O₄-class is very similar to that of spinel. The unit-cell dimension of the former is related to that of the latter by $(\sqrt{2/2})a_{\rm s} \times (\sqrt{2/2})a_{\rm s} \times$ $a_{\rm s}$, where $a_{\rm s}$ is the lattice parameter of the cubic spinel. The lattice parameters of the new AB₂O₄-class phases are listed in Table 2. The cations in both structures have the Cu₂Mg Laves-type structure, in which the A ions occupy the Mg site, while the B ions occupy the Cu site.¹² However, their oxygen arrangements are different, leading to coordination of the A, B, and O ions as described previously. The change in coordination between these two structures can be derived by two operations. First, the BO₄ square planes parallel to the *c*-axis are tilted $\sim \pm \pi/8$ with respect to those of spinel (see Figures 1a and b). Second, the BO₄ planes perpendicular to the *a* and *b*-axes are rotated by $\sim \pm \pi/8$ with respect to those of spinel about the 4-fold axis of the BO_4 planes (see Figure 1b). The adjacent planes are rotated toward each other, forming distorted O₈ square antiprisms. Such oxygen displacements not only meet the coordination requirement for the new AB₂O₄ class but also reduce the electrostatic repulsion between oxygens.

The structural relationship between spinel and the new AB_2O_4 class is illustrated in Figure 2. As oxygen

⁽⁹⁾ Rodriguez-Carvajal, J. Fullprof: A program for Rietveld refinement and profile matching analysis; Abstracts of the Satellite Meeting on Powder diffraction of the XV Congress of the International Union of Crystallography, Toulouse, France, 1990; p 127.

⁽¹⁰⁾ Chen, B.-H.; Jacobson, R. A. Powder Diffraction 1990, 5, 144.

⁽¹¹⁾ Shannon, R. D. Acta Crystallogr. 1976, A32, 751.

⁽¹²⁾ Ohba, T.; Kitano, Y.; Komura, Y. Acta Crystallogr. 1984, C40,

Figure 1. Structure of the new AB₂O₄-class, LaPd₂O₄-NdCu₂O₄-type. Medium (black), small (gray), and large (white) balls represent A, B, and O ions, respectively. (a, top) Projection on [001] (unique *c*-axis for monoclinic NdCu₂O₄), BO₄ square planes parallel to the *c*-axis are tilted $\sim \pm \pi/8$ with respect to those of spinel. (b, bottom) Projection on [100], BO₄ square planes perpendicular to the *a*-and *b*-axes are rotated by $\sim \pm \pi/8$ with respect to those of spinel about the 4-fold axis of the BO₄ planes.

ion O_a ($z = \sim^{1/8}$) in spinel (see Figure 2a) moves away from the B_3 ion toward one of the second-nearest A ions (z = 0), a distorted A_2B_2O tetrahedron forms (see Figure 2b). As a result, AO₄ tetrahedra in spinel transform to distorted edge-shared dodecahedra AO₈ in the NdCu₂O₄class phases, while BO₆ octahedra transform to cornershared BO₄ square-planes. The spinel structure transforms into the new AB₂O₄-class structure through this distortion.

New Version of Kugimiya–Steinfink AB₂O₄ Correlation Map

Kugimiya and Steinfink (K–S) have grouped the known structures for compounds with AB_2O_4 stoichiometry by plotting r_a/r_b versus the bond stretching force constant K_{ab} defined as:

$$K_{ab} = X_a X_b / r_e^2$$

where $r_e^2 = (r_a + r_o)^2 + (r_b + r_o)^2 + 1.155(r_a + r_o)(r_b + r_o)$ and r_a , r_b , and r_o are the radii of the A, B, and O ions, and X_a and X_b are the electronegativities of the A and B ions, respectively.¹³ This K–S AB₂O₄ map provides a useful index to predict the structural types of unknown phases and led to the solution of the NdCu₂O₄-type structure.²

Using Shannon's six-coordinated ionic radii for the A, B, and O ions and Allred-Rochow's electronegative values, ^{11,14} the r_a/r_b , and K_{ab} values were computed for the spinel, NdCu₂O₄-, LaPd₂O₄-, and CaFe₂O₄-type phases in the region $0.04 < K_{ab} < 0.18$ and $0.8 < r_a/r_b$ < 1.7. The B-cation radii (B = Cu and Pd) were taken by averaging those of B^{2+} and B^{3+} . It should be pointed out that the radii employed in this work are different from those used in the original K-S map.¹³ In addition, the spinels which fall in the investigated region and CaFe₂O₄ phases from ref 15 were selected for mapping. On the basis of these r_a/r_b and K_{ab} values, a new K–S map was generated and is presented in Figure 3. The AB₂O₄ correlation diagram shows that the new AB₂O₄ types lie in the area between the spinel and CaFe₂O₄ regions and that the NdCu₂O₄- and LaPd₂O₄-type structures are distinguished by the force constant K_{ab} .

The BaAu₂O₄ and CaIn₂O₄ phases fall in unexpected fields in the new map. Although use of Pauling-type electronegativities can solve these problems,¹⁶ they give poorer segregation between the new AB₂O₄ and spinel phases. Another popular AB₂O₄ correlation diagram besides the K–S map, plotting cationic radii A versus B, was produced by Muller and Roy.¹⁵ To compare the Muller–Roy diagram with the K–S diagram, a new version of the former was generated. The results are far less encouraging for a correlation than the K–S mapping.

Summary

The LaPd₂O₄-type compound LuPd₂O₄ has been prepared under high pressure. Attempts to synthesize ScPd₂O₄ failed as did ScCu₂O₄,² suggesting that Sc ion is too small to occupy the A site in the NdCu₂O₄– LaPd₂O₄-type structure. The structure of the new AB₂O₄ class can be derived from that of spinel by oxygen displacements. The new Kugimiya–Steinfink AB₂O₄ correlation map shows that the radius ratio is a dominant factor in determining the structural type, while the electronegativity influences the symmetry. The distribution of crystallization types may be more complex than the model of the K–S map. Unsurprisingly, there are some violations on the map. However, it provides useful information for predicting the structure type of the AB₂O₄ phases falling into the spinel,

⁽¹³⁾ Kugimiya, K.; Steinfink, H. Inorg. Chem. 1968, 7, 1762.

 ⁽¹⁴⁾ Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 264.
 (15) Muller, O.; Roy, R. The Major Ternary Structural Families, Springer-Verlag: Berlin, 1974.

⁽¹⁶⁾ Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215.

Figure 2. Structural comparison of spinel (a) and the new AB_2O_4 class, $LaPd_2O_4$ –NdCu₂O₄-type, projected on [001] (unique *c*-axis for monoclinic NdCu₂O₄) (b). (a) Tetrahedra AO₄ (A at the center links to four oxygen ions), octahedra BO₆ (dash line), and AB₃O group (O_a links to A, B₁ ($z = -1/_8$) below O_a, B₂, and B₃) in spinel. Arrows show the directions of the oxygen displacement from spinel to the new AB₂O₄ class. (b) Distorted dodecahedra AO₈, square planes BO₄, and A₂B₂O group (O_a links two A and two B) in the new AB₂O₄ class. BO₄ square planes are tilted $\sim \pi/8$ with respect to those of spinel.

Figure 3. Kugimiya–Steinfink AB₂O₄ map for the spinel-, LaPd₂O₄-, NdCu₂O₄-, and CaFe₂O₄-type compounds. Open diamonds, black diamonds, open squares, and black squares represent spinel-, CaFe₂O₄-, LaPd₂O₄-, and NdCu₂O₄-type phases.

 $NdCu_2O_4$, $LaPd_2O_4$, and $CaFe_2O_4$ regions of the K-S map, and for designing new materials with a desired structural type.

Acknowledgment. The authors wish to thank Mr. G. Paparoni for drawing Figure 2 and Ms. J. Hanley for technical assistance. This work is Contribution 5665

from the Lamont-Doherty Earth Observatory of Columbia University and was supported by the National Science Foundation and the Department of Energy. Work at the IBM Watson Research Center was supported by the Electric Power Research Institute.

CM970150H